

Kurzanleitung zur Inbetriebnahme und manuellen Sollwerteingabe SHINKO BCx2

1. Die Spannungsversorgungsleitungen an die entsprechenden Klemmen des Geräts anschliessen. (Gleiche Klemmennummern bei 230 VAC- wie auch 24 VDC-Geräten)

! Die Spannungsversorgung noch nicht einschalten!

2. Den Temperatursensor, je nach Sensorart, an die Messsignal-Eingangs-Klemmen anschliessen.

ROTH+CO. AG

Wiesentalstrasse 20 | CH-9242 Oberuzwil | T +4171955 02 02 | F +4171955 02 00 | info@rothcoag.ch | www.rothcoag.ch

3. Die Aktuator-Leitungen (Heizung, Kühlung) mit den Klemmen des Regler-Ausgang 1 (OUT1) verbinden.

4. Die Spannungsversorgung einschalten (230 VAC oder 24 VDC, je nach Geräte-Ausführung). Nach dem Einschalten geht der Regler in den RUN Modus über. Die Anzeige-Werte für PV und SV entsprechen der Werkseinstellung oder der Einstellungen vor dem Ausschalten des Reglers.

5. Den Initialisierungs-Modus zur Geräte-Parametrierung wählen.

Damit der PID Regler seine Aufgabe erfüllen kann, muss der Regler parametriert werden.

Als erstes muss der Sensor-Typ (Thermoelement Typ ..., Pt100) und die Temperatur-Einheit °C ausgewählt werden.

Zum Wechsel in den Initialisierungs-Modus sind die folgenden Tasten für > 3 Sekunden zu drücken:

Die Pfeiltaste und die Kreistaste sind in dieser Reihenfolge und gemeinsam für >3 Sekunden zu drücken.

Der Wechsel in den Initialisierungs-Modus ermöglicht die Eingangssignal-Bestimmung gemäss folgender Auswahlliste (Auswahl mit Pfeiltasten):

ELLE	K -200 to 1370°C	
E	K -200.0 to 400.0°C	
J	J -200 to 1000°C	
- ΞΞΣ	R 0 to 1760°C	
5	S 0 to 1760°C	
ЬШС	B 0 to 1820℃	
ELLE	E -200 to 800°C	
ГШ .С	T -200.0 to 400.0°C	
ο <u></u> Ε	N -200 to 1300℃	
PLZC	PL-Ⅱ 0 to 1390°C	
c E	C(W/Re5-26) 0 to 2315℃	
PF C	Pt100 -200.0 to 850.0℃	
JPF.E	JPt100 -200.0 to 500.0°C	
ΡΓ	Pt100 -200 to 850°C	
JPFE	JPt100 -200 to 500℃	
4208	4 to 20 mA DC -2000 to 10000	
020R	0 to 20 mA DC -2000 to 10000	
0 IB	0 to 1 V DC -2000 to 10000	
0S8	0 to 5 V DC -2000 to 10000	
(<u></u> 58	1 to 5 V DC -2000 to 10000	
0 108	0 to 10 V DC -2000 to 10000	
Durch Drücken de	r Kreistaste für > 3 Sekunden geht der Regler	
wieder in den RUN Modus über.		

6. Das Einstellen des Sollwertes erfolgt durch kurzes Drücken auf die Kreistaste des Reglers.

Der Soll-Wert wird in grün in Zeile SV angezeigt.
Der gewünschte Soll-Wert kann durch Drücken der Pfeil-Tasten (auf/ab) eingestellt werden.

8. Wenn der gewünschte Soll-Wert eingestellt ist, kann dieser durch Drücken der Kreistaste bestätigt werden.

Der Regler geht sogleich in den RUN-Modus über, d.h. die Regelung ist aktiv.

Ende der Inbetriebnahme und der manuellen Sollwerteingabe.

Optimierung der Regler-Parameter PID

Wenn das Reglerverhalten zu träge ist oder zum Überschwingen neigt, kann die AUTO-TUNING Funktion (AT) des Reglers genutzt werden. Bei der AUTO-TUNING Funktion ermittelt der Regler das Systemverhalten, errechnet die Werte der PID-Anteile und speichert diese ab.

Zum Starten der AUTO-TUNE Funktion sind folgende Tasten zu drücken:

Zu beachten:

- Die AUTO-TUNE Funktion sollte während des Probelaufs durchgeführt werden.
- Während dem AUTO-TUNE Vorgang kann keine andere Einstellung verändert werden.
- Wenn während dem AUTO-TUNE Vorgang ein Stromausfall auftritt, wird der Vorgang abgebrochen. Die bisherigen Werte von P, I, D bleiben erhalten.
- Der AUTO-TUNE Vorgang wird durch den Regler selbst abgebrochen, wenn der Vorgang nicht innerhalb von 4 Stunden abgeschlossen werden kann.

Hinweis:

 Wenn die Regel-Charakteristik noch weiter optimiert werden muss, müssen die P, I, D Werte im 'trail&error-Verfahren' manuell verändert werden (siehe SHINKO Betriebsanleitung).

Einstellen des Alarm- (Event-) Ausgangs EV1

Jeder SHINKO BCx2 Regler verfügt standardmässig über einen Alarm-Ausgang EV1, ausgeführt als Relais-Kontakt.

1. Der EV1-Ausgang belegt die folgenden Klemmen:

2. Alarmfunktionen

Der Regler bietet 18 verschiedene Alarmfunktionen

000	No event
00 1	Alarm output, High limit alarm
002	Alarm output, Low limit alarm
003	Alarm output, High/Low limits alarm
004	Alarm output, High/Low limits independent alarm
005	Alarm output, High/Low limit range alarm
005	Alarm output, High/Low limit range
	independent alarm
C00	Alarm output, Process high alarm
008	Alarm output, Process low alarm
009	Alarm output, High limit with standby alarm
0 10	Alarm output, Low limit with standby alarm
011	Alarm output, High/Low limits with standby
	alarm
012	Alarm output, High/Low limits with standby independent alarm
0 13	Heater burnout alarm output
0 14	Loop break alarm output
C 15	Time signal output
0 18	Output during AT
רו ס	Pattern end output
0 18	Output by communication command

An folgendem Beispiel werden die für die Alarm-Aktivierung erforderlichen Eingabeschritte aufgezeigt.

<u>Aufgabe</u>:

Es soll eine Alarm-Meldung aktiviert werden, wenn die Ist-Temperatur um 20°C über dem Soll-Wert von 200°C liegt (>220°C).

Alarm action

Lösung:

Auswahl des Alarmtyps EV1: High limit alarm mit EV1 alarm value = 20° und Soll-Wert SV = 200°

Beispiel eines Auto-Tune Prozesses anhand eines einfachen Temperatur-Regelkreises

Nach dem Start des Auto-Tune Prozesses ermittelt der Regler in mehreren Optimierungszyklen die P-, I- und D-Anteile. Hierbei vermeidet der Regler ein Überschreiten des Sollwertes (kein Überschwingen). Der Auto-Tune Prozess dauert in unserem Beispiel rund 40 Minuten. Je nach Regelkreis kann die Dauer variieren. Während dem der Prozess läuft und die P-, I- und D-Werte bestimmt werden, wird im Display 'AT' blinkend angezeigt. Am Ende des Prozesses geht der Regler in den Normal-Betrieb über und die Anzeige 'AT' im Display erlischt.

Die resultierende Schrittantwort sieht wie folgt aus:

